Two new genera of Physocypria sensu latu (Crustacea, Ostracoda) from Neotropical floodplains

Nadiny Martins de Almeida ${ }^{\mathbf{1}}$, Vitor Góis Ferreira ${ }^{\mathbf{1}}$, Koen Martens ${ }^{\mathbf{2}}$, Janet Higuti ${ }^{\mathbf{1}}$

${ }^{1}$ State University of Maringá (UEM), Centre of Biological Sciences (CCB), Department of Biology (DBI), Graduate Program in Ecology of Inland Water Ecosystems (PEA). Centre of Research in Limnology, Ichthyology and Aquaculture (Nupélia). Maringá, PR, Brazil. E-mail: nadinymartinsdealmeida@gmail.com
${ }^{2}$ Royal Belgian Institute of Natural Sciences, Natural Environments, Freshwater Biology, Brussels, Belgium. Ghent University, Department of Biology, K.L, Ghent, Belgium E-mail: darwinula@gmail.com

INTRODUCTION

Only three genera of Cyclocypridinae (Candonidae) have thus far been recorded from Neotropical region: Cyrpria Zenker, 1854, Physocypria Vávra, 1897 and Keysercypria Karanovic, 2011.

The two new genera resemble Physocypria s.s. in the shape of carapace, the overlap of LV over RV, the presence of marginal tubercles on RV, and the absence of d2-seta on T 2 .

Here, we describe the type species of the two new genera and re-instated Keysercypria Karanovic, 2011 but with a much more restricted diagnosis.

MATERIAL AND METHODS

The study area covers three Brazilian floodplains: (1) Amazon; (2) South Matogrossense Pantanal and (3) Upper Paraná (Fig. 1).

Fig. 1. Location of the Brazilian floodplain where the new genera were found.

RESULTS AND DISCUSSION

The two new genera share some similarities and differences with other Neotropical genera (Table 1).

Ostracods were collected from the roots and submerged leaves of aquatic macrophytes and from sediment using a hand net ($160 \mu \mathrm{~m}$ mesh size).

Genus 1 gen. nov. comprises five new species, while Genus 2 gen. nov. comprises two new species. These genera differ from each other specially by the shape of hemipenis (Fig. 2), the Md-palp last segment, the T3 dpseta and the proximal seta of the Caudal Ramus (Fig. 3).

Fig. 3. A-C. Genus 1 gen. nov. D-F. Genus 2 gen. nov. A, D. Md-palp. B, E. T3. C, F. CR. Scale bars: $50 \mu \mathrm{~m}$.

The two new genera can also be distinguished by the shape of carapaces (Fig. 4). Both new genera have a rounded dorsal margin, however Genus 1 gen. nov. is smaller (Fig. 4A-B) than Genus 2 gen. nov. (Fig. 4C-D), and the lastest has a larger overlap of LV over RV.

Table 1..Comparative morphology amongst the genera Physocypria s.s., Keysercypria, and the two new genera here described.

Character	Physocypria s.s.	Keysercypria	Genus 1 gen. nov.	Genus 2 gen. nov.
LV antero-ventral tooth	unknown	unknown	present	present
A2 short accompanying nat. seta	present	absent	absent	absent
Md palp beta seta	very short, thick	unknown	broad, elongated	broad, elongated
Md palp length last segment	$\mathrm{L}=2 \mathrm{xW}$	L=>5xW	$\mathrm{L}=3 \mathrm{xW}$	$\mathrm{L}=2 \mathrm{xW}$
Md palp last segment chaeto	3 claws +2 setae	unknown	3 claws +1 seta	3 claws + 1 seta
Mx1-palp last segment chaeto	6 claws and setae	4 claws and setae	5 claws and setae	5 claws and setae
T1 setae b	long	unknown	short	short
T1 setae d	long	unknown	long	long
T2 setae d1	present	absent	absent	absent
T2 seta d2	absent	absent	absent	absent
T2 seta e (male)	short	short	short	short
T2 seta h3 (male)	short	long	short	short
T3 seta d2	present	absent	absent	absent
T3 seta dp (male)	present	present	present	absent
T3 setae h2 vs h1	subequal	$\mathrm{h} 2>2 \mathrm{xh} 1$	h2 > 2 xh 1	$\mathrm{h} 2>2 \mathrm{xh} 1$
ovarium posteriorly	down /forwards	up/backwards	up/backwards	up/backwards
CR proximal seta	medium	medium	long	short

Fig. 4. Carapace lateral view of the new genera. A-C, male and B-D, female. A-B. Genus 1 gen. nov. C-D. Genus 2 gen. nov. Scale bars: $250 \mu \mathrm{~m}$.

Most (all?) Neotropical species described until this moment as Physocypria, do not belong to this genus. We re-instated the following species in Keysercypria: K. affinis (type species), K. deformis and K. schubarti.

